This page contains a national summary of the rutting from the LTPP database.
The code to generate this is displayed first - then the graphics.
Use the menu to left to go straight to the Rutting for all sites, State Highway sites, Local Authority sites or Individual sites.
The code below imports the data from the 10m databases
Sys.time()
## [1] "2021-11-29 10:53:56 NZDT"
#load database connection library
library(RODBC)
db <- "C:/local_databases/NZTA_SH&LA_LTPPData_IntCalib_1Jul2001-30Jun2021.mdb"
con2 <- odbcDriverConnect(paste0("Driver={Microsoft Access Driver (*.mdb, *.accdb)}; DBQ=", db))
Rutting10m <- sqlFetch(con2, "10mRutting")
CalibrationSections <- sqlFetch(con2, "CalibrationSections")
# Create SH/LA column
library(dplyr)
library(stringr)
CalibrationSections <- CalibrationSections %>% mutate(OwnerType = if_else((str_detect(CAL_SECTION_ID, "CAL")|str_detect(CAL_SECTION_ID, "CS")), "SH", "LA"))
Rutting10m <- Rutting10m %>% left_join(CalibrationSections, by = c("SECTION_ID"="CAL_SECTION_ID"))
library(ggplot2)
ggobj2 <- ggplot(data=Rutting10m, aes(x=FinancialYear, y=LWP, col = as.factor(LANE_DIRECTION))) +
geom_boxplot() + ggtitle("All Rutting10m LWP Boxplot") + facet_wrap(~SECTION_ID, ncol =5) + ylab("LWP Rutting (mm)") + xlab("Financial Year") + theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5)) + labs(col = "I/D")
print(ggobj2)
ggobj2 <- ggplot(data=Rutting10m, aes(x=FinancialYear, y=RWP, col = as.factor(LANE_DIRECTION))) +
geom_boxplot() + ggtitle("All Rutting10m RWP Boxplot") + facet_wrap(~SECTION_ID, ncol =5) + ylab("RWP Rutting (mm)") + xlab("Financial Year") + theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5)) + labs(col = "I/D")
print(ggobj2)
#SH Sites
Rutting10mSH <- Rutting10m %>% filter(OwnerType == "SH")
library(ggplot2)
ggobj2 <- ggplot(data=Rutting10mSH, aes(x=FinancialYear, y=LWP, col = as.factor(LANE_DIRECTION))) +
geom_boxplot() + ggtitle("SH Rutting10m LWP Boxplot") + facet_wrap(~SECTION_ID, ncol =5) + ylab("LWP Rutting (mm)") + xlab("Financial Year") + theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5)) + labs(col = "I/D")
print(ggobj2)
ggobj2 <- ggplot(data=Rutting10mSH, aes(x=FinancialYear, y=RWP, col = as.factor(LANE_DIRECTION))) +
geom_boxplot() + ggtitle("SH Rutting10m RWP Boxplot") + facet_wrap(~SECTION_ID, ncol =5) + ylab("RWP Rutting (mm)") + xlab("Financial Year") + theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5)) + labs(col = "I/D")
print(ggobj2)
#SH CAL Sites
Rutting10mSHCAL <- Rutting10mSH %>% filter(stringr::str_detect(SECTION_ID, "CAL"))
library(ggplot2)
ggobj2 <- ggplot(data=Rutting10mSHCAL, aes(x=FinancialYear, y=LWP, col = as.factor(LANE_DIRECTION))) +
geom_boxplot() + ggtitle("SH CAL Rutting10m LWP Boxplot") + facet_wrap(~SECTION_ID, ncol =5) + ylab("LWP Rutting (mm)") + xlab("Financial Year") + theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5)) + labs(col = "I/D")
print(ggobj2)
ggobj2 <- ggplot(data=Rutting10mSHCAL, aes(x=FinancialYear, y=RWP, col = as.factor(LANE_DIRECTION))) +
geom_boxplot() + ggtitle("SH CAL Rutting10m RWP Boxplot") + facet_wrap(~SECTION_ID, ncol =5) + ylab("RWP Rutting (mm)") + xlab("Financial Year") + theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5)) + labs(col = "I/D")
print(ggobj2)
#SH CS Sites
Rutting10mSHCS <- Rutting10mSH %>% filter(stringr::str_detect(SECTION_ID, "CS"))
library(ggplot2)
ggobj2 <- ggplot(data=Rutting10mSHCS, aes(x=FinancialYear, y=LWP, col = as.factor(LANE_DIRECTION))) +
geom_boxplot() + ggtitle("SH CS Rutting10m LWP Boxplot") + facet_wrap(~SECTION_ID, ncol =5) + ylab("LWP Rutting (mm)") + xlab("Financial Year") + theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5)) + labs(col = "I/D")
print(ggobj2)
ggobj2 <- ggplot(data=Rutting10mSHCS, aes(x=FinancialYear, y=RWP, col = as.factor(LANE_DIRECTION))) +
geom_boxplot() + ggtitle("SH CS Rutting10m RWP Boxplot") + facet_wrap(~SECTION_ID, ncol =5) + ylab("RWP Rutting (mm)") + xlab("Financial Year") + theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5)) + labs(col = "I/D")
print(ggobj2)
#LA Sites
Rutting10mLA <- Rutting10m %>% filter(OwnerType == "LA")
library(ggplot2)
ggobj2 <- ggplot(data=Rutting10mLA, aes(x=FinancialYear, y=LWP, col = as.factor(LANE_DIRECTION))) +
geom_boxplot() + ggtitle("LA Rutting10m LWP Boxplot") + facet_wrap(~SECTION_ID, ncol =5) + ylab("LWP Rutting (mm)") + xlab("Financial Year") + theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5)) + labs(col = "I/D")
print(ggobj2)
ggobj2 <- ggplot(data=Rutting10mLA, aes(x=FinancialYear, y=RWP, col = as.factor(LANE_DIRECTION))) +
geom_boxplot() + ggtitle("LA Rutting10m RWP Boxplot") + facet_wrap(~SECTION_ID, ncol =5) + ylab("RWP Rutting (mm)") + xlab("Financial Year") + theme(axis.text.x=element_text(angle=90,hjust=1,vjust=0.5)) + labs(col = "I/D")
print(ggobj2)
library(dplyr)
ggobj2LWPrut <- Rutting10m %>% group_by(SECTION_ID) %>% do(plots=ggplot(data=.) +
aes(x=FinancialYear, y=LWP, col = as.factor(LANE_DIRECTION)) + geom_boxplot() + labs(col = "I/D") + ggtitle("LWP Rut", subtitle = .$SECTION_ID) + ylab("LWP Rutting (mm)") + xlab("Financial Year"))
print(ggobj2LWPrut$plots)
## [[1]]
##
## [[2]]
##
## [[3]]
##
## [[4]]
##
## [[5]]
##
## [[6]]
##
## [[7]]
##
## [[8]]
##
## [[9]]
##
## [[10]]
##
## [[11]]
##
## [[12]]
##
## [[13]]
##
## [[14]]
##
## [[15]]
##
## [[16]]
##
## [[17]]
##
## [[18]]
##
## [[19]]
##
## [[20]]
##
## [[21]]
##
## [[22]]
##
## [[23]]
##
## [[24]]
##
## [[25]]
##
## [[26]]
##
## [[27]]
##
## [[28]]
##
## [[29]]
##
## [[30]]
##
## [[31]]
##
## [[32]]
##
## [[33]]
##
## [[34]]
##
## [[35]]
##
## [[36]]
##
## [[37]]
##
## [[38]]
##
## [[39]]
##
## [[40]]
##
## [[41]]
##
## [[42]]
##
## [[43]]
##
## [[44]]
##
## [[45]]
##
## [[46]]
##
## [[47]]
##
## [[48]]
##
## [[49]]
##
## [[50]]
##
## [[51]]
##
## [[52]]
##
## [[53]]
##
## [[54]]
##
## [[55]]
##
## [[56]]
##
## [[57]]
##
## [[58]]
##
## [[59]]
##
## [[60]]
##
## [[61]]
##
## [[62]]
##
## [[63]]
##
## [[64]]
##
## [[65]]
##
## [[66]]
##
## [[67]]
##
## [[68]]
##
## [[69]]
##
## [[70]]
##
## [[71]]
##
## [[72]]
##
## [[73]]
##
## [[74]]
##
## [[75]]
##
## [[76]]
##
## [[77]]
##
## [[78]]
##
## [[79]]
##
## [[80]]
##
## [[81]]
##
## [[82]]
##
## [[83]]
##
## [[84]]
##
## [[85]]
##
## [[86]]
##
## [[87]]
##
## [[88]]
##
## [[89]]
##
## [[90]]
##
## [[91]]
##
## [[92]]
##
## [[93]]
##
## [[94]]
##
## [[95]]
##
## [[96]]
##
## [[97]]
##
## [[98]]
##
## [[99]]
##
## [[100]]
##
## [[101]]
##
## [[102]]
##
## [[103]]
##
## [[104]]
##
## [[105]]
##
## [[106]]
##
## [[107]]
##
## [[108]]
##
## [[109]]
##
## [[110]]
##
## [[111]]
##
## [[112]]
##
## [[113]]
##
## [[114]]
##
## [[115]]
##
## [[116]]
##
## [[117]]
##
## [[118]]
##
## [[119]]
##
## [[120]]
##
## [[121]]
##
## [[122]]
##
## [[123]]
##
## [[124]]
##
## [[125]]
##
## [[126]]
##
## [[127]]
##
## [[128]]
##
## [[129]]
##
## [[130]]
##
## [[131]]
##
## [[132]]
##
## [[133]]
##
## [[134]]
##
## [[135]]
##
## [[136]]
##
## [[137]]
##
## [[138]]
##
## [[139]]
##
## [[140]]
##
## [[141]]
##
## [[142]]
##
## [[143]]
##
## [[144]]
##
## [[145]]
##
## [[146]]
##
## [[147]]
##
## [[148]]
##
## [[149]]
##
## [[150]]
##
## [[151]]
##
## [[152]]
##
## [[153]]
##
## [[154]]
##
## [[155]]
##
## [[156]]
##
## [[157]]
##
## [[158]]
##
## [[159]]
##
## [[160]]
##
## [[161]]
ggobj2RWPrut <- Rutting10m %>% group_by(SECTION_ID) %>% do(plots=ggplot(data=.) +
aes(x=FinancialYear, y=RWP, col = as.factor(LANE_DIRECTION)) + geom_boxplot() + labs(col = "I/D") + ggtitle("RWP Rut", subtitle = .$SECTION_ID) + ylab("RWP Rutting (mm)") + xlab("Financial Year"))
print(ggobj2RWPrut$plots)
## [[1]]
##
## [[2]]
##
## [[3]]
##
## [[4]]
##
## [[5]]
##
## [[6]]
##
## [[7]]
##
## [[8]]
##
## [[9]]
##
## [[10]]
##
## [[11]]
##
## [[12]]
##
## [[13]]
##
## [[14]]
##
## [[15]]
##
## [[16]]
##
## [[17]]
##
## [[18]]
##
## [[19]]
##
## [[20]]
##
## [[21]]
##
## [[22]]
##
## [[23]]
##
## [[24]]
##
## [[25]]
##
## [[26]]
##
## [[27]]
##
## [[28]]
##
## [[29]]
##
## [[30]]
##
## [[31]]
##
## [[32]]
##
## [[33]]
##
## [[34]]
##
## [[35]]
##
## [[36]]
##
## [[37]]
##
## [[38]]
##
## [[39]]
##
## [[40]]
##
## [[41]]
##
## [[42]]
##
## [[43]]
##
## [[44]]
##
## [[45]]
##
## [[46]]
##
## [[47]]
##
## [[48]]
##
## [[49]]
##
## [[50]]
##
## [[51]]
##
## [[52]]
##
## [[53]]
##
## [[54]]
##
## [[55]]
##
## [[56]]
##
## [[57]]
##
## [[58]]
##
## [[59]]
##
## [[60]]
##
## [[61]]
##
## [[62]]
##
## [[63]]
##
## [[64]]
##
## [[65]]
##
## [[66]]
##
## [[67]]
##
## [[68]]
##
## [[69]]
##
## [[70]]
##
## [[71]]
##
## [[72]]
##
## [[73]]
##
## [[74]]
##
## [[75]]
##
## [[76]]
##
## [[77]]
##
## [[78]]
##
## [[79]]
##
## [[80]]
##
## [[81]]
##
## [[82]]
##
## [[83]]
##
## [[84]]
##
## [[85]]
##
## [[86]]
##
## [[87]]
##
## [[88]]
##
## [[89]]
##
## [[90]]
##
## [[91]]
##
## [[92]]
##
## [[93]]
##
## [[94]]
##
## [[95]]
##
## [[96]]
##
## [[97]]
##
## [[98]]
##
## [[99]]
##
## [[100]]
##
## [[101]]
##
## [[102]]
##
## [[103]]
##
## [[104]]
##
## [[105]]
##
## [[106]]
##
## [[107]]
##
## [[108]]
##
## [[109]]
##
## [[110]]
##
## [[111]]
##
## [[112]]
##
## [[113]]
##
## [[114]]
##
## [[115]]
##
## [[116]]
##
## [[117]]
##
## [[118]]
##
## [[119]]
##
## [[120]]
##
## [[121]]
##
## [[122]]
##
## [[123]]
##
## [[124]]
##
## [[125]]
##
## [[126]]
##
## [[127]]
##
## [[128]]
##
## [[129]]
##
## [[130]]
##
## [[131]]
##
## [[132]]
##
## [[133]]
##
## [[134]]
##
## [[135]]
##
## [[136]]
##
## [[137]]
##
## [[138]]
##
## [[139]]
##
## [[140]]
##
## [[141]]
##
## [[142]]
##
## [[143]]
##
## [[144]]
##
## [[145]]
##
## [[146]]
##
## [[147]]
##
## [[148]]
##
## [[149]]
##
## [[150]]
##
## [[151]]
##
## [[152]]
##
## [[153]]
##
## [[154]]
##
## [[155]]
##
## [[156]]
##
## [[157]]
##
## [[158]]
##
## [[159]]
##
## [[160]]
##
## [[161]]
close(con2)